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AbItnId-In this study. a mathematical model is developed for two phase materials with the object of using
it for predicting the response of masonry walls to dynamic inputs. The method employed here uses the
theory of mixtures applied to a two phase material in which the phases reflect a periodic structure and in
which each phase is linearly elastic. Employing the fundamental equations of the theory of mixtures, the
governing equations of a linear approximate theory are established. The theory. valid for an arbitrary
direction of motion, replaces the composite by a homollCneous, two phase. anisotropic, elastic solid. It
accommodates the dispersive nature of the composite by means of an elastlHlynamic operator. which is
introduced into the constitutive relations of the linear momentum iteractions.

I. INTRODUCTION
With the motivation of studying the response of masonry walls to dynamic inputs. in this work
we develop a mathematical model for two phase materials. We assume that both of the phases
are linearly elastic and perfectly bonded at their interfaces and that the phases have a periodic
structure.

In establishing the mathematical model, several approaches can be adopted. The first is the
exact treatment which includes the field equations of elasticity for each phase and the equations
of continuity at the interfaces. As this approach makes the analysis very complicated. it is not
of practical interest. and thus the development of an approximate theory becomes a necessity.

During the last few years. a number of approximate theories have been proposed. In the first
. of these. the two phase composite is replaced by a homogeneous, anisotropic, elastic medium.
As this theory, called effective modulus theory, does not accommodate any dispersion. it is valid
only when the wave length is very large. As an example of this type of theory, we refer to a
study by Rytov [I). where an effective modulus theory is developed for a layered composite. To
compensate for the shortcomings of the effective modulus theory, another approximate theory,
called effective stiffness theory, is proposed for layered and fiber reinforced composites in
Refs. [2-4]. In this theory the approximate governing equations are obtained by expanding the
displacements for each constituent in power series and introducing the series into a variational
functional. However. the possibility of extending this theory to composites containing vertical
layering does not appear to be fruitful. as the theory has rather complicated equations even for
simple composites like layered and fiber reinforced materials. Hegemier et al.[5.6] proposed
another approach, which they called theory of interacting continua. The theory contains a
micro-structure and is based on asymptotic expansions of the field variables with respect to the
space variables. However, they developed the theory again for layered and fiber reinforced
composites only. For waves propagating perpendicular to layering in a layered material, the
exact spectrum has a banded structure with passing and stopping bands, which contain points
governing harmonic waves which are propagated and attenuated respectively. Herrman. Kaul
and Delph[7. 8] have developed a one-dimensional approximate theory which they call effective
dispersion theory, for waves propagating perpendicular to layering only. Their theory ac­
commodates the first stopping band and approximates quite well the two lowest spectral lines over
the first two Brillouin lones.
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We adopt a different approach for establishing the mathematical model for two phase
materials. In this study the material is considered as a mixture consisting of two phases and the
theory of mixtures is used to obtain approximate equations governing its dynamic behavior.
The resulting theory is a general one which would include the geometry of a masonry wall as a
particular case. The only restrictions imposed by the theory are that the two phases exhibit a
periodic form and that the material of each phase be linearly elastic.

The idea of treating composites as a mixture is not new. In fact. it has previously been used
in Refs. (9. 10] for developing approximate theories predicting the dynamic response of layer
and fiber reinforced composites when the motion is in the direction of the layers of fibers.
Later. Bedford (II] attempted to extend this theory to a general case where the motion could
have an arbitrary direction. However. his method has some shortcomings as he did not take into
account coupling in the stress-strain relations which would imply that the state of stress of one
phase is affected by the deformation of the other.

The approximate theory we propose in this study for an arbitrary direction of motion
replaces the heterogeneous two phase composite by an homogeneous. anisotropic. elastic solid.
In developing the theory. we have chosen the mixture approach for several reasons. First. this
method leads to equations simple enough to be used in the dynamic analysis of complicated
composite materials such as masonry walls. Secondly. since we account for linear momentum
interactions between the phases. the resulting approximate equations not only exhibit aniso­
tropy. but also accommodate dispersion. The dispersion is accounted for by a time dependent
operator. which we call an elastodynamic operator. It relates the interaction forces to the
difference of the average phase displacements. The introduction of this operator. which we
believe is new. not only improves the matching of approximate fundamental spectral lines with
exact ones. but also makes it possible to match the second approximate and exact cut-off
frequencies. Third. the mixture approach allows us to write the approximate equations of all
two phase composites in a common form. The difference comes when we adapt this form to a
particular geometry. The microstructure derived from the geometry governs specific forms of
the interaction and stress constitutive equations of a given composite.

The total study of the theory is. of necessity. very lengthy so that we have had to divide the
study into three parts in reporting on it. In this first paper the general theory for two phase
materials is developed. To make the paper more comprehensive we discuss in a general way the
further development. which follows in a second paper. when a particular periodic structure is
specified.

The second paper is divided into two parts. In the first. the general theory is adapted to a
material that is made up of periodic layers. This choice is made as the geometry approximates
that of masonry walls. and because there are available for layered materials an exact theory and
a large amount of experimental data describing the propagation of waves in specified directions.
The development from the general to the particular is significant and ends with a particular
model containing an array of constants. The second part of the paper is devoted to establishing
these constants. The way in which they are found is by no means unique. and only the method
chosen is described in detail. The final part of the second paper compares the behavior of
infinite trains of waves in the layered media with predictions from the exact theory and certain
experimental results.

In the third paper the completed model is assessed. Transient wave behavior in a number of
directions predicted by the theory is compared with experimental data.

2. FUNDAMENTAL EQU ATIONS

As we adopt the theory of mixtures for developing the theory. we first review the
fundamental equations of a two phase mixture. which have been studied extensively by many
researchers (see, e.g. [12-17]). Ail the variables appearing in these equations are related to the
average values of the quantities they represent.

The local forms of the fundamental equations for a two phase composite. which is referred
to an (XI' X~. X3) Cartesian coordinate system. are:

Conservation of mass

ap,. a ( 0) 0-+- P v· == •at ax; a I
(2.1)
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Equations of linear momentum

Balance of energy

'" aqt D"'E'" '" avt '"
n r - -n --+UL.-+·1. =0.
r'" ax; r'" Dt ., ax. 'I'

The Clausius-Duhem inequality
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(2.2)

(2.3)

(2.4)

We note that in writing the equation of conservation of mass (eqn 2.0, we neglect the mass
transfer between the phases. We assume that there is no angular momentum interaction
between the phases. This implies that the partial stress components, uij, are symmetric. This
assumption is consistent with the classical mixture theory which is used in this study. To take
into account the angular momentum interaction between phases, one needs to use the micro­
morphk mixture theory by which antisymmetric distributions of the field variables can be
accommodated.

In accordance with the equations of the theory of mixtures [12-17], the interactions Mr, !/J'"
and {J'" satisfy the relations

2 2 2

L Mr = 0; L (Mrvr + !/J"') = 0; L {J'" = O.
a-I cr::al a .. 1

(2.6)

If the mass densities of the phases are denoted by p",R, the partial masses P'" are related to
p",R by

(2.7)

where n", is the volume fraction of the a-phase with the property

(2.8)

Finally, an important comment regarding the Clausius-Duhem inequality is in order. The
form of the Clausius-Duhem inequality for a mixture is still the subject of controversy. Even
though the fClrm (eqn 2.4), used in this study is physically acceptable for two phase composites
where the constituents are separate in microscale, it is by no means universally accepted.

3. THERMODYNAMIC ANALYSIS FOR INFINITESIMAL DEFORMATIONS
In the literature, thermodynamic analysis is presented in general terms for various mixtures

composed of nonlinear phases (see, e,g, [15-17]). In these works a single common temperature is
assumed for all phases. Here we present thermodynamic analysis for our specific mixture, i.e.
for linear two phase composites, by using the Coleman-Noll procedure. Through this analysis,
we establish the specific form of the stress constitutive relations and heat conduction equations
for our particular material. Our analysis is based on the fundamental equations presented in the
previous section and on the findings established in the area of the theory of mixtures. We
assume that deformations are infinitesimal and both phases are elastic.

We begin the analysis by approximating the operator (D"'lDt) by
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for infinitesimal theory. If internal energy and entropy densities. and heat rates due to heat
sources are redefined by

per unit volume of the composite, the energy equation (2.3). and the Clausius-Duhem in­
equality. (2.4). become

(3. t)

(3.2)

respectively, where the dot indicates partial differentiation with respect to time, and the eij,
defined by

0_ t (aur aut)
e i; - 2 ax; + aXi ' (3.3)

represent the infinitesimal strain components for the a-phase. In eqn (3.3) the ut are the
average phase displacement components.

With the aid of the energy equation (3. t). the Clausius-Duhem inequality (3.2), takes the
form

(3.4)

When we write eqn (3.4) for a = t and a = 2. and add (using eqns 2.6) we get

(3.5)

which is the total entropy inequality written per unit volume of the composite. In eqn (3.5)
2

E = ~ P describes the total internal energy density.
a= I

In accordance with the findings established in the theory of mixtures [to] we assume

(3.6)

Equation (3.6) shows that the phase internal energy density Eo depends on the deformations of
both phases. This, as it will be seen later, leads to a coupling in the stress-strain relations
implying that the state of stress of one phase is influenced by the deformations of the other. We
believe that this coupling, which is disregarded in Ref. [11], is crucial for an adequate
description of a composite as a mixture. Using eqn (3.6) and the definition of the total internal
energy density, the total entropy inequality (3.5). can be written in the form

2 (0 aE).o 2 (0 aE).oL T --aa 11 +~ U;j-aea. ejj
a~ I TJ a -I I'

(3.7)

Since TJo and eli are independent state variables, in order to satisfy this inequality we should
have
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(3.8)

When eqns (3.8) are taken into account the total entropy inequality reduces to

(3.9)

Introducing the Helmholtz free energy density t/J"

(3.10)

and defining the total Helmholtz free energy density t/J

and using eqns (3.6) and (3.8), we obtain the relations

"I,a - "I,a (I 2 T'a )'f' - 'f' eij, eij,

and

which imply

4 _ "( I 2 Ta)'11 - '11 eii,eii'

a _ 4 (' 2 T' T7)O'ii-O'ij tii,eij, , .

(3.\1)

(3.12)

(3.13)

(3.14)

We let tbe temperatures of both phases be To in the reference configuration of the two phase
composite, which is assumed to be free of stresses. As we are dealing with an infinitesimal
theory and are assuming small deviations from the reference temperature To, we expand the
stresses and entropies about zero deformation and the reference temperature To using Taylor's
formula, and retain only linear terms. When we use the symmetry conditions

which are the implications of eqns (3.13), we obtain
2 a

'I1
a = 'I1oa +~ pijl'en +Cr. 04

IJ-' 0

2 2

uij =I C~"ee." - ~ pr fJlJ,
IJ-I IJ-I

where the coefficients C~" have the property

(3.15)

(3.16)

(3.17)
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In eqns (3.16) fr. defined by
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represents phase temperature deviations from the reference temperature To; 1/0" denotes the
value of the phase entropy density 1/" in the reference configuration: c" is the specific heat at
constant deformation for the a-phase, measured per unit volume of the composite, and is
defined by

The coefficients c:;~. and pi/ appearing in the second of eqns (3.16) denote the material
constants of a linear two phase composite. The symmetry of strain and stress components further
imposes the conditions

c:;~. = q~.

c:;~. = C:;~m (3.18)

on the material constants. The conditions, eqns (3.17) and (3.18), indicate that the number of
independent material constants in the stress-strain relations, the second of eqns (3.16), is at most
102.

The coefficients (C Ij~n, C;j~n) and (p 1/, pn')describe the coupling in the stress constitutive
equations. the second of eqns (3.16). These terms respectively permit the state of stress of one
phase to be affected by the deformation and temperature deviation of the other.

We now turn our attention to deriving the heat conduction equations for a two phase
composite. We first notice that the energy equation (3.1), when eqns (3.6) and (3.8) are used,
reduces to

R" aqt ~ aE"'fJ T"'" "." ./," 0- Ox. - 4J 0e fJ eij- 1/ +uije;j+", = .
U I fJ~1 u IJ

(3.19)

We assume that partial heat flux vectors are related to the gradients of the average phase
temperatures by the Fourier equation

qt = - ±ki/ ao
fJ

•
/1_' aXj

(3.20)

where kif are the coefficients of heat conduction defined per unit area of the composite. The
coefficients k1/ and k;/ in eqn (3.20) describe the thermal coupling between phases.

When the linear entropy relation, the first of eqns (3.16) and the Fourier equation (3.20), are
used and when the temperature deviation from the equilibrium state is assumed to be small. the
energy equation (3.19) becomes

where

.ip "." ~ aE" ·fJ
'" = Uij eij - 4J ae~ ejj'

fJ-' II

0.21 )

(3.22)

,
From the second of eqns (3.8) and eqn (3.22) it follows that :r satisfies ± :r = O. Equation

0=1
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(3.22) shows that, in the absence of the coupliJ'. intredllCed by eqn (3.6), it separately vanishes
for both phases. This means that the term ~ in eqn (3.21) represents the energy interaction
between the phases due to the coupling in stress constitutive equations.

We now separate the interaction due to heat exchange between the phases from the total
interaction (",a +Jr). To do this we let

• =
",a +l/r = "'-+Q-, (3.23)

where Qa represents the heat exchange between the phases (defined per unit volume of the
2

composite) and satisfies I Q- =O. When we substitute eqn (3.23) into eqn (3.21) we obtain the
a-I

final form of the heat conduction equation

-
where the interaction term ". satisfies the equation

2 _

~ (~_+Mr vt) = 0
a=1

in view of the second of eqns (2.6), eqn (3.23) and the relations

2 • 2

L l/r =0 and ~ 0- =O.
a-I a-I

(3.24)

(3.25)

of. RESTRICTIONS ON MODEL CONSTANTS
For studying the constraints imposed on model constants we use an hypothesis which states

that the strain energy function must be positive definite. For a two phase composite the strain
energy function W per unit volume is defined by

2

dW = L uii deii·
a-I

(4.1)

By integrating eqn (4.1) and using the second of eqns (3.16), disregarding thermal effects we get

(4.2)

In the derivation of eqn (4.2) we assume that the strain energy is zero at reference
confilUration. Equation (4.2) indicates that the strain energy function will be positive definite
only if

(4.3)

is satisfied for all symmetric Iii, where the equality holds only when lij = O. Equation (4.3)
governs all of the constraints imposed on the model constants Ct,n'

The stress contitutive equations and the positive definiteness condition can be written
alternatively in matrix fonn by. using vector representations of the stress and strain tensors.
These forms are presented in Appendix A.

5. SOME REMARKS ON INTERACTION CONSTITUTIVE EQUATIONS
For completing the theory we have to supply it with additional constitutive relations for the

interaction terms appearing in the linear momentum and energy equations. To this end we



278 H. D. McNlvEN and Y. MENGI

postulate that the force and heat interactions between the phases are. through time dependent
linear operators. related to the differences of phase displacements and temperatures respec­
tively. i.e.

Mj
l = - M? = rjj(u/ - U/)

QI = - Q2 = H'(02 - 0 '), (5.1)

where r:j denotes the operator for linear momentum interaction and H' for the heat exchange.
In view of Ref. [16] another term involving the gradient of phase temperatures can be added to
the r.h.s. of the first of eqn (5.1). However. in order to keep the theory as simple as possible.
this term representing the coupling between the linear momentum interaction and the tem­
perature gradient is neglected. For a given composite. the forms of the operators in eqns (5.1)
can be determined either experimentally or by using micro-model analysis. For example. in a
subsequent study. where we will develop the theory for a two phase layered composite.
approximate forms of these operators. will be established by using a procedure based on
micro-model analysis. which is very similar to the one used by Biot[18.19]. He introduces a
viscodynamic operator describing the friction between the fluid and solid phases of an isotropic
porous material.

We believe that the inclusion of the operator fjj. which we will call the elastodynamic
operator in the theory. is important. In fact. the presence of this operator in the theory. which
accounts for the dispersion of waves in composites. not only brings some improvement to the
matching of the approximate fundamental spectral lines with the exact. but also makes it
possible to match the second approximate and exact cut-off frequencies.

We have now completed the general formulation of the linear approximate theory developed

for a two phase composite. Provided that the constitutive equation for ~ a is known. the field
variables ut. ef;. (Tij and 8a can be found by solving the linear momentum equations (3.1).
strain-displacement relations (3.3). stress constitutive relations. the second of eqns (3.16). heat
conduction equations (3.24). and interaction constitutive relations (5.0. subject to appropriate
initial and boundary conditions.

6. COMPLETION OF THE MODEL FOR A PARTICULAR TWO PHASE MATERIAL
The approximate theory. just established. governs the dynamic response of a two phase

composite. The theory not only accommodates the anisotropy of the composite. but also its
dispersive characteristics caused by the interfaces separating the two phases.

When we say that the theory is complete. it must be understood that it is complete only in
the general sense. The theory applies to all two phase materials with periodic structure and for
materials in which each of the phases is linearly elastic. The model cannot be completed until a
specific two phase material is defined. which entails specifying the geometry and the properties
of each of the two phases.

The steps required in progressing from the general theory to a complete model replacing a
specific two phase material are significant. They are described in detail in a paper following this.
but it seems appropriate here to describe in a qualitative way what those steps entail.

When the geometry of the two phase material is known. its influence on the model constants
and the elastodynamic operator must first be explored. The geometry usually imposes sym­
metry restrictions which significantly reduce the number of these unknowns. It remains to
establish the surviving unknowns.

The best set of values for the unknowns will be achieved by using a method known as
system identification. It is used in conjunction with experimental data. System identification is a
systematic method for estimating the set of unknowns that will minimize the differenct:s
between responses predicted by the model and those from experiments over some specified
extent of the responses.

Experimental data may not be available. and even if they are. the method of system
identification could be complex and require a great deal of computer time.

Other methods are available which may be used separately or together. The first employs
micro-model analysis which is based on the deformation modes assumed for the phases. When
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the geometry of the two phase material is known, the micro-model can be constructed. The
second method depends on having an exact theory for the two phase material. The product of
the exact theory would be frequency spectra relating frequencies and wave lengths for infinite
trains of waves. The unknowns could be established by matching the two sets of spectral lines
for a specific set of properties of these lines. In this procedure special attention should be given
to avoiding the violation of the model constraints imposed because the strain energy function is
positive definite.

The approximate theory developed here is based on the theory of mixtures. With the object
of keeping the theory as simple as possible, we have used the average values of the field
variables. It may be that because of this simplication, an acceptable match between the
responses predicted by this theory and experimental responses, or the responses from the exact
theory, will not be possible. If such is the case, the theory can be improved, at the expense of
complication, by employing micromorphic mixture theory. In that theory, antisymmetric
distributions of the field variables are accommodated.

A last comment regarding the application of the mathematical model developed in this study
to masonry walls is in order. We know that taking into account nonlinear and debonding effects
in the response of masonry walls to dynamic inputs is important. The linear theory proposed in
this study will form a basis to include these effects in the model. To explain this more explicitly,
we refer to the second paper where a constitutive relation for the linear momentum interaction
for layered composites is established through the use of micromodel analysis. This analysis is
based on displacement and stress continuity conditions at interfaces. By relaxing these
continuity conditions, the debonding effect can be accommodated in the theory.
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APPENDIX A
For future use in subsequent studies we write the stress constitutive equations in matrix form

(AI)
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where (To and eO are vector representations of stress and strain tensors defined by

caB is a (, x 6 material coefficient matrix of the form

c~r. 'cC:]
c:r ~

and pOB is a six dimensional vector defined by

The stress constitutive equations (A I1. govern the anisotropic behavior of a given composite. The symmetry conditions
T

(eqn 3.17l. indicate that the matrices e" and e22 are both symmetric and e21 is equal to the transpose of e'2 i.e. e21 =e12
•

This establishes the symmetry of the overall stiffness matrix in eqn (A I).
The matrix form of the positive definiteness condition (4.3), is

T

ses~o.

where S is an arbitrary twelve dimensional vector and e is the 12 x 12 overall stiffness matrix defined by

= [C II C12

]e T .

c'2e22

(A2)

(A3)

From linear algebra we know thai the inequality (A2l is satisfied if all of the eigenvalues or principal minors of the
symmetric matrix e are positive. This explicitly determines the constraints to be satisfied by the model constants.


